

661

`The 1st International Conference on Business, Innovation, Technology & Science

Understanding LLM Responses in Programming Tasks:
A Study on Prompt Quality, Personalization, and RAG
Limitation

Meilyna Hutajulu1, Ioka Purba2, Mulyadi Siahaan3, Samuel Situmeang4*, Mario Simaremare5

1,2,3,4,5 Department of Information Systems, Institut Teknologi Del, Jl. Sisingamangaraja, Sitoluama Laguboti,
Kab. Tobasa, Sumatra Utara, 22381, Indonesia

Keywords Abstract

Adaptive Prompting; Generative AI;
Personalized Learning; Retrieval-
Augmented Generation.

Programming is a fundamental skill in the field of technology
and education in the digital era. However, students’
understanding of programming varies significantly between
senior and junior learners. Senior students tend to have
stronger comprehension of code structure and programming
logic, while junior students often struggle to identify well-
structured code. Current learning processes remain general
and are not sufficiently tailored to individual student needs.
Existing personalization approaches are still shallow and have
not been fully integrated with students’ abilities and learning
contexts. The emergence of Generative Artificial Intelligence
(GenAI), particularly Large Language Models (LLMs) such as
GPT, Claude, and Gemini, offers new opportunities to support
more adaptive and personalized programming education.
LLMs can act as interactive learning assistants capable of
explaining concepts, generating code examples, and providing
direct feedback. However, their use also presents challenges,
including hallucination risks that may lead to conceptual
misunderstandings and a strong dependency on the quality of
user-crafted prompts. In addition, prior studies show that
Retrieval-Augmented Generation (RAG) has not performed
optimally in debugging contexts, as external documents are not
always effectively utilized by the model. These issues highlight
the need to explore more effective approaches for leveraging
GenAI to deliver programming learning that is adaptive,
contextual, and safe from misinformation.

*Correspondence Email:
samuel.situmeang@del.ac.id

1. Introduction
Programming has become one of the core competencies in modern technology and education. In today’s digital

era, the ability to write and understand code is not only essential for students in computer science related fields

but has also become part of broader technological literacy. However, the level of programming comprehension

among students varies significantly. Senior or advanced-level students generally possess stronger abilities in

understanding code structure, program logic, and syntactic patterns compared to junior or beginner-level

students (Nurollahian et al., 2024).

662

These differences indicate a clear gap in programming education. Traditional teaching methods that rely on

generalized and uniform instructional approaches often fail to accommodate the individual needs of students.

As a result, some students struggle to follow the material, while others do not receive sufficient challenge to

further develop their skills. This highlights the importance of adopting more personalized and adaptive

learning approaches tailored to each student’s capabilities. Several studies show that personalization in

programming education remains limited to shallow personalization, where learning is adapted only

superficially without considering individual interests, capabilities, or specific learning difficulties (Prather,

2024). Such approaches are not sufficient to help students deeply understand core concepts or navigate

through code structures effectively.

Recent advancements in Generative Artificial Intelligence (GenAI), particularly Large Language Models (LLMs)

such as GPT, Gemini, and Claude, open promising opportunities for more adaptive and personalized learning

support. LLMs can understand user queries, interpret context, and produce relevant responses, making them

potential interactive assistants for learning concepts, writing code, and performing debugging tasks. However,

these models still face significant challenges (Annuš, 2025). One major limitation is hallucination, where the

model generates plausible-sounding but incorrect information (Berberette et al., 2023). This poses risks for

novice learners, who may adopt incorrect concepts or misunderstand code semantics.

Another challenge lies in students’ ability to formulate effective prompts. Many student especially beginners

tend to produce unclear or incomplete prompts, resulting in irrelevant or unhelpful responses (Simaremare et

al., 2024). Previous studies also found that the integration of Retrieval-Augmented Generation (RAG) within

programming education has not been fully effective, especially for debugging tasks, where external documents

provided by the system are often not utilized optimally by the model (Simaremare et al., 2025).

These challenges collectively demonstrate that leveraging GenAI for programming education is not

straightforward. Despite its potential, significant gaps remain in how LLMs interpret student intent, adapt

explanations to different skill levels, and deliver contextually appropriate guidance while minimizing

hallucination.

Therefore, this study focuses on identifying and analyzing the underlying issues related to the use of GenAI

particularly LLMs in supporting programming education. The goal is to develop a deeper understanding of how

these systems respond to student questions, how contextual alignment can be improved, and how personalized

learning experiences can be enhanced for students across varying levels of programming proficiency.

2. Literature Review
2.1 Programming Education and Its Challenges

Learning programming is a complex process that requires not only logical reasoning skills but also the ability

to understand structure, syntax, and computational thinking patterns. Early-stage students often struggle to

connect theoretical concepts with their practical implementation in the form of source code. According to

(Nurollahian et al., 2024), senior students demonstrate a higher ability to recognize well-organized code

structures compared to junior students, indicating that programming proficiency develops through consistent

exposure and experience.

However, many instructional approaches in programming courses remain uniform. Students of varying skill

levels receive the same materials and teaching methods without differentiation based on individual proficiency.

As a result, students who struggle in the early stages tend to fall behind, while more advanced students do not

receive sufficient challenges to progress further (Prather, 2024).

2.2 Personalization in Learning

Personalized learning aims to adapt materials, methods, and learning pace to each student’s needs and abilities.

In digital education, personalization has become a key approach to increasing student engagement and learning

effectiveness (Helen & Nada, 2024).

663

Yet, many personalization approaches in programming education still rely on shallow personalization, where

learning content is adjusted only superficially (e.g., renaming variables or changing narrative themes) without

considering students’ abilities or learning styles. Consequently, such personalization does not significantly

improve the understanding of more complex programming concepts (Helen & Nada, 2024).

Previous studies emphasize that effective deep personalization requires analyzing students’ learning

behaviors, common mistakes, and problem-solving strategies. Implementing this type of personalization is

challenging because it demands systems capable of automatically recognizing user context and proficiency

(Helen & Nada, 2024).

2.3. GenAI in Education

Advances in GenAI have brought significant changes to education. One prominent example is the rise of LLMs

such as GPT, Claude, and Gemini. LLMs are designed to understand natural language contexts and generate

responses relevant to user queries. In programming education, LLMs can act as interactive learning assistants

capable of explaining concepts, generating sample code, and helping identify errors in programs (Solanki &

Khublani, 2024).

However, GenAI systems also present limitations. A key issue is hallucination, where the model produces

responses that sound convincing but are incorrect or irrelevant. In programming tasks, hallucinated

explanations or incorrect code can lead to conceptual misunderstandings that students may struggle to detect

(Berberette et al., 2023). Moreover, the quality of interaction between students and LLMs heavily depends on

the quality of prompts provided. Ambiguous or underspecified prompts often result in responses that do not

address the actual problem students face (Simaremare et al., 2024).

2.4. RAG

To mitigate hallucination and improve accuracy, some studies have applied RAG. RAG combines the generative

capability of LLMs with an external retrieval mechanism that fetches relevant documents as grounding sources

before the model generates its response (Gheorghiu, 2024).

Although RAG theoretically improves factual accuracy, its use in programming education especially for

debugging tasks remains challenging. Prior research indicates that during debugging, RAG does not

consistently contribute useful external context (Simaremare et al., 2025). Retrieved documents are often not

effectively incorporated into the model’s reasoning, resulting in minimal improvement in feedback quality. This

suggests a need for further analysis of how LLMs interpret and utilize retrieved context when analyzing and

correcting source code.

2.5. Challenges Students Face When Constructing Prompts

Beyond technological considerations, human factors play an important role in the effectiveness of GenAI-

assisted learning. Many students struggle to craft effective prompts. They often provide instructions that are

too general, non-contextual, or insufficiently specific to the problem at hand. Since prompt clarity directly

influences the quality of responses, poorly constructed prompts frequently lead to irrelevant or suboptimal

answers from the model (Simaremare et al., 2024).

This limitation in prompt formulation poses a key obstacle to the adoption of GenAI in programming education.

Therefore, it is important to investigate how prompt characteristics influence the quality of responses students

receive, and how guidance on prompt construction can improve learning outcomes.

3. Discussion
The review of existing literature reveals several critical issues underlying the use of LLM-based systems in

programming education. LLMs offer strong potential as interactive learning tools, yet their effectiveness varies

widely based on student proficiency, prompt clarity, and contextual understanding.

664

Novice learners frequently struggle to craft precise prompts because they lack foundational knowledge about

programming concepts. Their interactions with LLMs often result in generic explanations that fail to address

the core difficulty. In contrast, advanced students are better equipped to pose detailed and contextual

questions, enabling LLMs to generate more relevant responses. This difference demonstrates that the value of

GenAI tools depends not only on the model’s capabilities but also on the student’s ability to communicate the

problem clearly.

Hallucination remains an important concern when GenAI is used for coding assistance. Inaccurate or

misleading responses may go unnoticed by beginners, potentially reinforcing misconceptions. Without a

verification mechanism or grounding strategy, students may extend these misunderstandings into subsequent

learning activities.

The adoption of Retrieval-Augmented Generation aims to provide additional context by supplying external

documents, yet its effectiveness in programming tasks is still limited. Even when relevant documents are

retrieved, LLLMs do not consistently integrate them into their reasoning. This indicates that improvements in

retrieval alignment and model-context integration are necessary for RAG to become more impactful in

educational settings.

Prompting difficulties also emerge as one of the most frequently cited issues in GenAI-supported learning.

Students’ ability to articulate their understanding and learning needs affects how the model interprets the

problem. Teaching adaptive prompting strategies or integrating prompt-refinement mechanisms may help

address this challenge.

Taken together, these findings highlight the importance of developing more adaptive and personalized GenAI-

based learning systems. Students possess diverse levels of prior knowledge, and a one-size-fits-all model

cannot accommodate the full spectrum of learning needs. Effective systems must therefore incorporate

personalization that reflects student proficiency, learning context, and the nature of the task.

4. Conclusions
This study outlines the major issues surrounding the adoption of GenAI, particularly LLMs, in programming

education. Variations in student skill levels significantly influence how learners interact with LLMs and how

effectively they interpret model responses. Novice learners often face difficulties in prompt construction and

conceptual verification, whereas advanced learners benefit more readily from the models’ capabilities.

The tendency of LLMs to hallucinate remains a persistent obstacle, amplifying the risk of conceptual

misunderstandings during code interpretation or debugging. Verification mechanisms and clearer grounding

strategies are necessary to reduce this risk.

The integration of Retrieval-Augmented Generation has not yet demonstrated consistent effectiveness in

programming contexts, as retrieved documents are not always incorporated meaningfully into the model’s

reasoning. This suggests the need for improved alignment between retrieval systems and generative

components.

Overall, the findings demonstrate that implementing GenAI in programming education must prioritize

adaptability, contextual understanding, and safety. Effective instructional strategies should integrate prompt-

refinement support, provide mechanisms for verification, and identify conditions under which RAG contributes

meaningfully to the learning process.

5. Recommendations and Future Work
The findings from this study indicate several important directions for improving the use of GenAI in

programming education. Future systems should provide more adaptive support that matches students’

different levels of programming proficiency. Models need the ability to adjust explanations and guidance based

on whether the learner is a beginner or an advanced student.

665

Improvements in prompt support are also necessary. Many learners struggle to formulate clear prompts, so

future tools should help refine or clarify user queries before generating responses. This can ensure that

students receive more accurate and relevant explanations.

Mitigating hallucination remains another essential focus. Systems should include mechanisms to verify

generated code or explanations, reducing the risk of incorrect information that may mislead learners.

Enhancing Retrieval-Augmented Generation is equally important. Future work should explore better ways for

models to incorporate retrieved documents so that external context contributes meaningfully during

debugging or code analysis tasks.

Overall, further development should emphasize adaptive guidance, safer responses, and more effective use of

contextual information. These improvements can support more reliable and personalized learning experiences

for students who rely on GenAI in understanding programming.

6. References
Annuš, N. (2025). Investigation of Generative AI Adoption in IT-Focused Vocational Secondary School

Programming Education.

Berberette, E., Hutchins, J., & Sadovnik, A. (2023). Redefining ”Hallucination” in LLMs: Towards a psychology-
informed framework for mitigating misinformation.

Gheorghiu, A. (2024). Building Data-Driven Applications with LlamaIndex.

Helen, F., & Nada, D. (2024). DESIGNING LEARNING EXPERIENCES A FRAMEWORK FOR HIGHER EDUCATION
AND Learning Experiences. Routledge. https://doi.org/10.4324/9781003121008

Nurollahian, S., Rafferty, A. N., & Brown, N. (2024). Growth in Knowledge of Programming Patterns : A
Comparison Study of CS1 vs . CS2 Students. 979–985. https://doi.org/10.1145/3626252.3630865

Prather, J. (2024). Evaluating Contextually Personalized Programming Exercises Created with Generative AI. 95–
113. https://doi.org/10.1145/3632620.3671103

Simaremare, M., Pardede, C., Tampubolon, I., Simangunsong, D., & Manurung, P. (2024). Pair Programming in
Programming Courses in the Era of Generative AI : Students ’ Perspective. 2024 31st Asia-Pacific Software
Engineering Conference (APSEC), 507–511. https://doi.org/10.1109/APSEC65559.2024.00069

Simaremare, M., Pardede, S., Purba, E., Pangaribuan, S., & Siagian, J. (2025). THE IMPLEMENTATION OF
GENERATIVE AI FOR PERSONALIZED LEARNING THROUGH THE RETRIEVAL AUGMENTED GENERATION
(RAG) AND PERSONA APPROACHES.

Solanki, S. R., & Khublani, D. K. (2024). Generative Artificial Intelligence.

