"~ ICoBITS

‘The 15t International Conference on Business, Innovation, Technology & Science r International Conference

on Business, Innovation,
‘ Technology & Science

Understanding LLM Responses in Programming Tasks:
A Study on Prompt Quality, Personalization, and RAG

Limitation

Meilyna Hutajulu?, Ioka Purba?, Mulyadi Siahaan3, Samuel Situmeang#’, Mario Simaremare>

12345 Department of Information Systems, Institut Teknologi Del, Jl. Sisingamangaraja, Sitoluama Laguboti,
Kab. Tobasa, Sumatra Utara, 22381, Indonesia

Keywords

Adaptive Prompting; Generative Al;
Personalized Learning; Retrieval-
Augmented Generation.

*Correspondence Email:
samuel.situmeang@del.ac.id

Abstract

Programming is a fundamental skill in the field of technology
and education in the digital era. However, students’
understanding of programming varies significantly between
senior and junior learners. Senior students tend to have
stronger comprehension of code structure and programming
logic, while junior students often struggle to identify well-
structured code. Current learning processes remain general
and are not sufficiently tailored to individual student needs.
Existing personalization approaches are still shallow and have
not been fully integrated with students’ abilities and learning
contexts. The emergence of Generative Artificial Intelligence
(GenAl), particularly Large Language Models (LLMs) such as
GPT, Claude, and Gemini, offers new opportunities to support
more adaptive and personalized programming education.
LLMs can act as interactive learning assistants capable of
explaining concepts, generating code examples, and providing
direct feedback. However, their use also presents challenges,
including hallucination risks that may lead to conceptual
misunderstandings and a strong dependency on the quality of
user-crafted prompts. In addition, prior studies show that
Retrieval-Augmented Generation (RAG) has not performed
optimally in debugging contexts, as external documents are not
always effectively utilized by the model. These issues highlight
the need to explore more effective approaches for leveraging
GenAl to deliver programming learning that is adaptive,
contextual, and safe from misinformation.

1. Introduction

Programming has become one of the core competencies in modern technology and education. In today’s digital
era, the ability to write and understand code is not only essential for students in computer science related fields
but has also become part of broader technological literacy. However, the level of programming comprehension
among students varies significantly. Senior or advanced-level students generally possess stronger abilities in
understanding code structure, program logic, and syntactic patterns compared to junior or beginner-level

students (Nurollahian et al., 2024).

661

These differences indicate a clear gap in programming education. Traditional teaching methods that rely on
generalized and uniform instructional approaches often fail to accommodate the individual needs of students.
As a result, some students struggle to follow the material, while others do not receive sufficient challenge to
further develop their skills. This highlights the importance of adopting more personalized and adaptive
learning approaches tailored to each student’s capabilities. Several studies show that personalization in
programming education remains limited to shallow personalization, where learning is adapted only
superficially without considering individual interests, capabilities, or specific learning difficulties (Prather,
2024). Such approaches are not sufficient to help students deeply understand core concepts or navigate
through code structures effectively.

Recent advancements in Generative Artificial Intelligence (GenAl), particularly Large Language Models (LLMs)
such as GPT, Gemini, and Claude, open promising opportunities for more adaptive and personalized learning
support. LLMs can understand user queries, interpret context, and produce relevant responses, making them
potential interactive assistants for learning concepts, writing code, and performing debugging tasks. However,
these models still face significant challenges (Annus, 2025). One major limitation is hallucination, where the
model generates plausible-sounding but incorrect information (Berberette et al., 2023). This poses risks for
novice learners, who may adopt incorrect concepts or misunderstand code semantics.

Another challenge lies in students’ ability to formulate effective prompts. Many student especially beginners
tend to produce unclear or incomplete prompts, resulting in irrelevant or unhelpful responses (Simaremare et
al,, 2024). Previous studies also found that the integration of Retrieval-Augmented Generation (RAG) within
programming education has not been fully effective, especially for debugging tasks, where external documents
provided by the system are often not utilized optimally by the model (Simaremare et al., 2025).

These challenges collectively demonstrate that leveraging GenAl for programming education is not
straightforward. Despite its potential, significant gaps remain in how LLMs interpret student intent, adapt
explanations to different skill levels, and deliver contextually appropriate guidance while minimizing
hallucination.

Therefore, this study focuses on identifying and analyzing the underlying issues related to the use of GenAl
particularly LLMs in supporting programming education. The goal is to develop a deeper understanding of how
these systems respond to student questions, how contextual alignment can be improved, and how personalized
learning experiences can be enhanced for students across varying levels of programming proficiency.

2. Literature Review
2.1 Programming Education and Its Challenges

Learning programming is a complex process that requires not only logical reasoning skills but also the ability
to understand structure, syntax, and computational thinking patterns. Early-stage students often struggle to
connect theoretical concepts with their practical implementation in the form of source code. According to
(Nurollahian et al., 2024), senior students demonstrate a higher ability to recognize well-organized code
structures compared to junior students, indicating that programming proficiency develops through consistent
exposure and experience.

However, many instructional approaches in programming courses remain uniform. Students of varying skill
levels receive the same materials and teaching methods without differentiation based on individual proficiency.
As aresult, students who struggle in the early stages tend to fall behind, while more advanced students do not
receive sufficient challenges to progress further (Prather, 2024).

2.2 Personalization in Learning

Personalized learning aims to adapt materials, methods, and learning pace to each student’s needs and abilities.
In digital education, personalization has become a key approach to increasing student engagement and learning
effectiveness (Helen & Nada, 2024).

662

Yet, many personalization approaches in programming education still rely on shallow personalization, where
learning content is adjusted only superficially (e.g., renaming variables or changing narrative themes) without
considering students’ abilities or learning styles. Consequently, such personalization does not significantly
improve the understanding of more complex programming concepts (Helen & Nada, 2024).

Previous studies emphasize that effective deep personalization requires analyzing students’ learning
behaviors, common mistakes, and problem-solving strategies. Implementing this type of personalization is
challenging because it demands systems capable of automatically recognizing user context and proficiency
(Helen & Nada, 2024).

2.3. GenAl in Education

Advances in GenAl have brought significant changes to education. One prominent example is the rise of LLMs
such as GPT, Claude, and Gemini. LLMs are designed to understand natural language contexts and generate
responses relevant to user queries. In programming education, LLMs can act as interactive learning assistants
capable of explaining concepts, generating sample code, and helping identify errors in programs (Solanki &
Khublani, 2024).

However, GenAl systems also present limitations. A key issue is hallucination, where the model produces
responses that sound convincing but are incorrect or irrelevant. In programming tasks, hallucinated
explanations or incorrect code can lead to conceptual misunderstandings that students may struggle to detect
(Berberette et al., 2023). Moreover, the quality of interaction between students and LLMs heavily depends on
the quality of prompts provided. Ambiguous or underspecified prompts often result in responses that do not
address the actual problem students face (Simaremare et al., 2024).

2.4.RAG

To mitigate hallucination and improve accuracy, some studies have applied RAG. RAG combines the generative
capability of LLMs with an external retrieval mechanism that fetches relevant documents as grounding sources
before the model generates its response (Gheorghiu, 2024).

Although RAG theoretically improves factual accuracy, its use in programming education especially for
debugging tasks remains challenging. Prior research indicates that during debugging, RAG does not
consistently contribute useful external context (Simaremare et al., 2025). Retrieved documents are often not
effectively incorporated into the model’s reasoning, resulting in minimal improvement in feedback quality. This
suggests a need for further analysis of how LLMs interpret and utilize retrieved context when analyzing and
correcting source code.

2.5. Challenges Students Face When Constructing Prompts

Beyond technological considerations, human factors play an important role in the effectiveness of GenAl-
assisted learning. Many students struggle to craft effective prompts. They often provide instructions that are
too general, non-contextual, or insufficiently specific to the problem at hand. Since prompt clarity directly
influences the quality of responses, poorly constructed prompts frequently lead to irrelevant or suboptimal
answers from the model (Simaremare et al., 2024).

This limitation in prompt formulation poses a key obstacle to the adoption of GenAl in programming education.
Therefore, it is important to investigate how prompt characteristics influence the quality of responses students
receive, and how guidance on prompt construction can improve learning outcomes.

3. Discussion

The review of existing literature reveals several critical issues underlying the use of LLM-based systems in
programming education. LLMs offer strong potential as interactive learning tools, yet their effectiveness varies
widely based on student proficiency, prompt clarity, and contextual understanding.

663

Novice learners frequently struggle to craft precise prompts because they lack foundational knowledge about
programming concepts. Their interactions with LLMs often result in generic explanations that fail to address
the core difficulty. In contrast, advanced students are better equipped to pose detailed and contextual
questions, enabling LLMs to generate more relevant responses. This difference demonstrates that the value of
GenAl tools depends not only on the model’s capabilities but also on the student’s ability to communicate the
problem clearly.

Hallucination remains an important concern when GenAl is used for coding assistance. Inaccurate or
misleading responses may go unnoticed by beginners, potentially reinforcing misconceptions. Without a
verification mechanism or grounding strategy, students may extend these misunderstandings into subsequent
learning activities.

The adoption of Retrieval-Augmented Generation aims to provide additional context by supplying external
documents, yet its effectiveness in programming tasks is still limited. Even when relevant documents are
retrieved, LLLMs do not consistently integrate them into their reasoning. This indicates that improvements in
retrieval alignment and model-context integration are necessary for RAG to become more impactful in
educational settings.

Prompting difficulties also emerge as one of the most frequently cited issues in GenAl-supported learning.
Students’ ability to articulate their understanding and learning needs affects how the model interprets the
problem. Teaching adaptive prompting strategies or integrating prompt-refinement mechanisms may help
address this challenge.

Taken together, these findings highlight the importance of developing more adaptive and personalized GenAl-
based learning systems. Students possess diverse levels of prior knowledge, and a one-size-fits-all model
cannot accommodate the full spectrum of learning needs. Effective systems must therefore incorporate
personalization that reflects student proficiency, learning context, and the nature of the task.

4. Conclusions

This study outlines the major issues surrounding the adoption of GenAl, particularly LLMs, in programming
education. Variations in student skill levels significantly influence how learners interact with LLMs and how
effectively they interpret model responses. Novice learners often face difficulties in prompt construction and
conceptual verification, whereas advanced learners benefit more readily from the models’ capabilities.

The tendency of LLMs to hallucinate remains a persistent obstacle, amplifying the risk of conceptual
misunderstandings during code interpretation or debugging. Verification mechanisms and clearer grounding
strategies are necessary to reduce this risk.

The integration of Retrieval-Augmented Generation has not yet demonstrated consistent effectiveness in
programming contexts, as retrieved documents are not always incorporated meaningfully into the model’s
reasoning. This suggests the need for improved alignment between retrieval systems and generative
components.

Overall, the findings demonstrate that implementing GenAl in programming education must prioritize
adaptability, contextual understanding, and safety. Effective instructional strategies should integrate prompt-
refinement support, provide mechanisms for verification, and identify conditions under which RAG contributes
meaningfully to the learning process.

5. Recommendations and Future Work

The findings from this study indicate several important directions for improving the use of GenAl in
programming education. Future systems should provide more adaptive support that matches students’
different levels of programming proficiency. Models need the ability to adjust explanations and guidance based
on whether the learner is a beginner or an advanced student.

664

Improvements in prompt support are also necessary. Many learners struggle to formulate clear prompts, so
future tools should help refine or clarify user queries before generating responses. This can ensure that
students receive more accurate and relevant explanations.

Mitigating hallucination remains another essential focus. Systems should include mechanisms to verify
generated code or explanations, reducing the risk of incorrect information that may mislead learners.

Enhancing Retrieval-Augmented Generation is equally important. Future work should explore better ways for
models to incorporate retrieved documents so that external context contributes meaningfully during
debugging or code analysis tasks.

Overall, further development should emphasize adaptive guidance, safer responses, and more effective use of
contextual information. These improvements can support more reliable and personalized learning experiences
for students who rely on GenAl in understanding programming.

6. References

Annus, N. (2025). Investigation of Generative Al Adoption in IT-Focused Vocational Secondary School
Programming Education.

Berberette, E., Hutchins, J., & Sadovnik, A. (2023). Redefining "Hallucination” in LLMs: Towards a psychology-
informed framework for mitigating misinformation.

Gheorghiu, A. (2024). Building Data-Driven Applications with Llamalndex.

Helen, F., & Nada, D. (2024). DESIGNING LEARNING EXPERIENCES A FRAMEWORK FOR HIGHER EDUCATION
AND Learning Experiences. Routledge. https://doi.org/10.4324/9781003121008

Nurollahian, S., Rafferty, A. N.,, & Brown, N. (2024). Growth in Knowledge of Programming Patterns: A
Comparison Study of CS1 vs. CS2 Students. 979-985. https://doi.org/10.1145/3626252.3630865

Prather,]. (2024). Evaluating Contextually Personalized Programming Exercises Created with Generative Al. 95-
113. https://doi.org/10.1145/3632620.3671103

Simaremare, M., Pardede, C., Tampubolon, 1., Simangunsong, D., & Manurung, P. (2024). Pair Programming in
Programming Courses in the Era of Generative Al : Students ' Perspective. 2024 31st Asia-Pacific Software
Engineering Conference (APSEC), 507-511. https://doi.org/10.1109/APSEC65559.2024.00069

Simaremare, M., Pardede, S., Purba, E., Pangaribuan, S., & Siagian,]. (2025). THE IMPLEMENTATION OF
GENERATIVE Al FOR PERSONALIZED LEARNING THROUGH THE RETRIEVAL AUGMENTED GENERATION
(RAG) AND PERSONA APPROACHES.

Solanki, S. R,, & Khublani, D. K. (2024). Generative Artificial Intelligence.

665

